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Abstract. We consider the revival properties of quantum systems with an eigenspectrumEn ∝ n2,
and compare them with the simplest member of this class—the infinite square well. In addition to
having perfect revivals at integer multiples of the revival timetR , these systems all enjoy perfect
fractional revivals at quarterly intervals oftR . A closer examination of the quantum evolution is
performed for the P̈oschel–Teller and Rosen–Morse potentials, and comparison is made with the
infinite square well using quantum carpets.

Over the past ten years or so there has been a growing interest in the quantum dynamics of simple
systems, motivated in part by the richness of new phenomena such as revivals [1] and quantum
carpets [2–4]. Indeed, the phenomenon of revivals is not merely a theoretical construct, but
has been observed in ion traps [5], Rydberg atoms [6] and semiconductor wells [7] and has
been used to differentiate ionization pathways in potassium dimers [8]. Quantum revivals are
similar, but distinct from, quantum Poincaré recurrences, which have been studied recently
in the context of the kicked rotator [9]. In the former, one is interested in the deterministic
reconstruction of the wavefunction during its evolution inside a fixed potential, whilst in the
latter, interest is focused on the decay of the return probability in ‘mixed’ regions of phase
space, as a measure of the quantum chaos in the (usually forced) system. For the most part,
analytic studies of revivals and carpets have concentrated on the infinite square well (ISW)
potential, which is known to have perfect revivalsand fractional revivals [10], and also a
quantum carpet composed of rays (straight lines in the space–time plane) [3]. These properties
have been understood on the basis of the quadratic dependence of the energy on quantum
number, along with the fact that the eigenfunctions are elementary trigonometric functions.

It is well understood that perfect revivals can only occur for systems whose energy
spectrum is purely quadratic in the quantum number [1]. If the dependence is purely linear
(harmonic oscillator) the only timescale is the classical period of oscillation, while for more
complicated energy spectra, revivals will be imperfect due to modulations from the super-
revival timescale. Although many studies have been devoted to the simplest quantum system
with a quadratic energy spectrum—namely, the ISW—there has been less attention paid to the
host of other potentials which share this property (although see [11] for a discussion of the
autocorrelation function for the Morse potential). It is guaranteed that these systems will have
perfect revivals, but what can one say about fractional revivals, and the existence of quantum
carpets (i.e. hidden structures in the space–time plot of the probability density)?
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We shall begin with some very general remarks about fractional revivals. Consider a
system with a purely quadratic, nondegenerate energy spectrumEn = α2n2, (n = 0, 1, 2, . . .),
and with a potentialV (x) centred atx = 0. We take the potential to be anevenfunction ofx.
In this case the eigenfunctionsφn(x) will have a definite even or odd symmetry, alternating as
the quantum number increases, the ground state naturally being even, since it has no node. So
we haveφn(−x) = (−1)nφn(x). We prepare the wavefunction of the system in an initial state
specified by the energy eigenfunction expansion

ψ(x, 0) =
∑
n

cnφn(x). (1)

We restrict ourselves to contributions from bound states only. The time-evolved wavefunction
is given by

ψ(x, t) =
∑
n

cnφn(x) exp[−iEnt ] (2)

where we have chosen units of ¯h = 1. Given the quadratic dependence of the energy levels on
n, it is easy to see from equation (2) that the wavefunction will be identical to its initial state
at integer multiples of the revival timetR ≡ 2π/α2.

Now consider the wavefunction at a time equal to one-half oftR. One easily finds

ψ(x, tR/2) =
∑
n

cnφn(x) exp[−iπn2]. (3)

Given that e−iπn2 = (−1)n, we have

ψ(x, tR/2) =
∑
n even

cnφn(x)−
∑
n odd

cnφn(x). (4)

Returning to the initial wavefunction, one may use the parity properties of the eigenstates to
demonstrate that

ψ(x, 0) =
∑
n even

cnφn(x) +
∑
n odd

cnφn(x)

ψ(−x, 0) =
∑
n even

cnφn(x)−
∑
n odd

cnφn(x).
(5)

Clearly, on comparing equations (4) and (5) we have the perfect fractional revivalψ(x, tR/2) =
ψ(−x, 0). This result may appear to follow from the symmetry of the potential and time-
reversal invariance; however, this is not the case (cf the discussion following equation (14)).

A less obvious result follows, however, when we study the wavefunction at one-quarter
of the revival time. We have

ψ(x, tR/4) =
∑
n

cnφn(x) exp[−iπn2/2]. (6)

Considering the phase forn = 0, 1, 2, 3 mod(4) one can easily establish that

ψ(x, tR/4) =
∑
n even

cnφn(x)− i
∑
n odd

cnφn(x). (7)

Solving the two expressions in equation (5) for the odd and even sets of modes, we find the
perfect fractional revival

ψ(x, tR/4) = (1− i)

2
ψ(x, 0) +

(1 + i)

2
ψ(−x, 0). (8)

In a similar manner one may show that

ψ(x, 3tR/4) = (1 + i)

2
ψ(x, 0) +

(1− i)

2
ψ(−x, 0). (9)
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Thus, a system with an even potential and a purely quadratic energy spectrum supports perfect
fractional revivals at quarters of the revival time. Especially interesting are the fractional
revivals attR/4 and 3tR/4 which for an initially localized wavefunction will consist of two
perfect, mirrored ‘cat states’. We have failed to find perfect fractional revivals at other fractions
of the revival time for this general class of systems (i.e. utilizing only parity properties of the
eigenfunctions).

Let us now be more specific, and consider in turn two potentials of the type considered
above: namely symmetric cases of the Pöschel–Teller (PT) and Rosen–Morse (RM)
potentials [12,13]. PT takes the form (with the ground state energy set at zero)

VS1(x) = −A2 +A(A− α) sec2(αx) (10)

defined in the range−π/26 αx 6 π/2, and with energy spectrum

En = (A + nα)2 − A2. (11)

In order to have perfect quarterly revivals, it is necessary to chooseA = Mα, with M an
integer. Note that PT has an infinite number of bound states, and no scattering states. The
bound states may be expressed in terms of Gegenbauer polynomials with argument sin(αx).
We shall restrict our attention toM = 2, in which case the energy eigenfunctions are sums of
bilinear products of elementary trigonometric functions.

RM takes the form

VS2(x) = A2 − A(A + α) sech2(αx) (12)

defined forx on the entire real line, and with energy spectrum

En = A2 − (A− nα)2. (13)

Again, to ensure perfect quarterly revivals, we chooseA = Mα, with M a positive integer.
RM has onlyM bound states, which may be expressed in terms of the Gegenbauer polynomials
with argument i sinh(αx).

Although the energy spectra for these potentials are not purely quadratic inn, it is a simple
matter to redefine the quantum number by shifting byM, in which case the perfect quarterly
revivals found above take the slightly modified form

ψ(x, tR/4) = 1
2(1− iθ)ψ(x, 0) + 1

2(1 + iθ)ψ(−x, 0)
ψ(x, tR/2) = ψ(−x, 0)
ψ(x, 3tR/4) = 1

2(1 + iθ)ψ(x, 0) + 1
2(1− iθ)ψ(−x, 0)

(14)

whereθ = (−1)M . If one choosesA/α to be a half-integer, the revival attR/2 is identical to
the full revival, yet the perfect quarterly revivals are lost.

Much can be learnt about these systems by preparing an initial wavefunction from a
finite number of eigenstates, and then studying its evolution using equation (2). It is common
practice [1] to construct the initial wavefunction using the firstN modes, with weightscn
drawn from a Gaussian distribution centred at some reasonably energetic moden̄

|cn|2 ∼ exp

[
− (n− n̄)

2

2σ 2

]
. (15)

This simulates, for instance, a laser-prepared state in an ion trap. We have evolved the
wavefunction in the PT and RM potentials using these weights. (We choose equal phases
for thecn in order to create a well-localized initial wavepacket. Choosing random phases does
not affect the revival structure, but tends to obscure the regularity of the quantum carpets.)
Aside from confirming the perfect quarterly revivals found above, we have found that PT has
nearly perfect fractional revival states at rational fractions of the revival time, whereas there
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Figure 1. Probability density for the PT potential (with
parameter valuesα = π ,M = 2,N = 30,σ = 3.0, and
n̄ = 15) at times: (a) t = 0, (b) t = tR/5, (c) t = tR/4,
and (d) t = tR/3.

Figure 2. Probability density for the RM potential (with
parameter valuesα = 1.0,M = N = 20,σ = 4.0, and
n̄ = 10) at times: (a) t = 0, (b) t = tR/5, (c) t = tR/4,
and (d) t = tR/3.

Figure 3. Probability density for the RM potential (with
parameter valuesα = 1.0,M = N = 20,σ = 4.0, and
n̄ = 10) for values ofA/α = M + r, with (a) r = 0.0
(leftmost), 0.25 (centre), and 0.5 (rightmost) at timetR/2;
(b) r = 0.0 at tR/4; (c) r = 0.25 at t = tR/4; and
(d) r = 0.5 att = tR/4.

is little sign of such nearly perfect states for RM (although they will appear for much higher
energy wavepackets [1]). In figures 1 and 2 we illustrate this by showing the probability
densityρ at timest = 0, tR/5, tR/4 andtR/3 for PT and RM potentials, respectively. To test
the robustness of the quarterly revivals we have also evolved an excited wavepacket in the RM
potential, but away from the rationality conditionA/α = M. We setA/α = M + r, with
r ∈ (0, 1

2). We find imperfect, yet ‘smooth’ fractional revivals attR/2 for general values of
r (see figure 3(a)). However, the fractional revivals attR/4 are more sensitive tor, and fade
away forr > 0.25 (see figures 3(b)–3(d)).

The almost perfect fractional revivals for PT may be understood intuitively, since for
a wavefunction constructed around a moderately energetic state, the PT potential closely
resembles the ISW—i.e. the harmonic structure of the bottom of the well is barely resolved.
(One may also make a more quantitative argument by changing the basis of equation (2) from
the PT eigenfunctions to the eigenfunctions of the ISW. One finds that the overlap integrals
for largen are sharply peaked. Thus the dominant part of the wavefunction may be expanded
(with the weightscn) in terms of the energy eigenstates of the ISW, which, as mentioned
before, has perfect fractional revivals at all rational fractions oftR.) Given the poor resolution
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Figure 4. The quantum carpets (i.e. space–time contour
plots of the probability density) for PT (left) and RM
(right), with parameter values as before, shown fort ∈
(0, tR/2). The darker regions indicate higher probability
density.

Figure 5. Detail of the quantum carpet for the RM
potential aroundt = tR/4, showing the emergence and
subsequent collapse of two perfect cat states.

of the structure of the potential, one would also expect that the quantum carpets for PT closely
resemble those found for the ISW. This is indeed the case, as shown on the left of figure 4,
where the characteristic rays are clearly visible.

As an alternative to preparing the initial wavefunction around some energetic state, one can
use a weighting that favours the lower-lying states (using an exponentially decaying distribution
for thecn, for example). We have studied this case, and indeed the correspondence with the ISW
disappears, and the evolution of the wavefunction is a slowly modulated classical oscillation
(since the well has a harmonic minimum). The almost perfect fractional revivals are invisible,
and the quantum carpet has no structure. The perfect quarterly revivals may still be resolved.

As mentioned above, the RM potential shows little sign of fractional revivals, apart from the
perfect quarterly revivals. However, the quantum carpet for this potential reveals considerable
structure, as shown on the right of figure 4; the rays of PT are replaced by a complicated
structure of what appear to be nonlinear ‘world lines’. A magnified view of the first perfect
quarterly revival is shown in figure 5.

We have yet to attain a physical understanding of the quantum carpet for RM. Approaches
which work well for the ISW [3] are less useful here due to the complicated nature of the
eigenfunctions. It is interesting to note that the structures visible in the ISW/PT quantum
carpet (i.e. rays) can be interpreted as a superposition of coherent wavepackets (CWPs) which
follow classical trajectories (with a discrete spectrum of initial velocities selected to ensure a
perfect revival att = tR). Whether these CWPs can be identified with the coherent states [14]
corresponding to the ISW is unclear. The apparent world lines of the RM quantum carpet might
also be interpreted in this way, although the CWPs no longer follow classical trajectories. This
is clear from the manner in which the world lines proceed through the minimum of the potential
at t = tR/4.

A computational application of our results is the testing of numerical algorithms designed
to integrate forward the time-dependent Schrödinger equation [15]. These algorithms do not
generally rely upon energy eigenfunction expansions, and testing them against exact results
(for general initial conditions, and non-trivial potentials) is difficult due to the scarcity of such
results in quantum dynamics. An algorithm which integrates the wavefunction forward in
time in the PT or RM potentials, and successfully generates (i.e. recovers with good precision)
perfect quarterly revivals can be trusted in other applications. A positive feature of this test
is that one can implement it forany initial condition (strictly true only for PT for which the
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bound states form a complete set). It is interesting to note that algorithms which use discrete
Fourier modes for free-particle propagation will fail to capture perfect revivals, since they are
based on a Hamiltonian with a discrete lattice Laplacian, thus replacing the purek2 spectrum
by 2(1− cosk), although they will find increasingly good revival structures as the number of
Fourier modes is increased.

In conclusion, we have studied the quantum revivals and carpets for systems with a
quadratic energy spectrum and an even potential. We have proven thatall such systems have
perfect quarterly revivals, in addition to perfect complete revivals. We have studied the time
evolution of two such systems—the PT and RM potentials—more closely. From a moderately
energetic initial distribution of modes, the evolution of the wavefunction in PT (being defined in
a finite region of space) has many similarities to that of the ISW, with almost perfect fractional
revivals at rational fractions oftR, and a quantum carpet with characteristic rays. This similarity
disappears continuously as one decreases the mean energy of the wavefunction, thus allowing
better resolution of the harmonic minimum of the well. The evolution of the wavefunction
in RM shows little fractional revival structure, apart from the perfect quarterly revivals. Its
quantum carpet, although devoid of rays, displays a dazzling pattern, the understanding of
which is currently being pursued.

This study has shown that many of the rich dynamical properties of the ISW are fairly
generic, thus increasing their experimental relevance. Indeed, the PT and RM potentials
capture features of real quantum systems, which are missing in the ISW: namely, a spatially
varying potential energy, with a harmonic minimum, and in the case of RM, a finite number
of bound states (see also the discussion of super revivals in the finite square well [16]). The
robustness of the perfect quarterly revivals may well be of interest to experimentalists seeking
to create perfect cat states from a localized wavepacket. Indeed, this is the initial entangled
state required for quantum communication [17] (although ‘entanglement’ usually refers to two
or more degrees of freedom), and which is generally created using more complicated laser
interferometry. (Fabrication of an approximate RM potential may well be realizable using
semiconductor quantum well technology.)

Aside from the PT and RM potentials, there are other potentials which are isospectral to
the ISW (and which may be generated using the Darboux transformation [13]). A study of their
revival properties may well prove worthwhile. As a final remark, it is noteworthy that the PT
potential (withM = 2) and the ISW are supersymmetric partner potentials [13], and therefore
share the same energy spectrum (bar the lowest state). Whether, due to supersymmetry,
these systems share otherdynamicalequivalents, aside from perfect quarterly revivals, is an
interesting open question.
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